

POLAND 61-139 Poznan ul. Jana Pawła II 10 phone: (+48 61) 858-20-01 office@man.poznan.pl www.psnc.pl

Ariel Oleksiak Poznań Supercomputing and Networking Center

Energy efficient computing and computing for energy

Question: How much energy has been consumed to display the "Gangnam style" video?

Hint: the most frequently displayed video on YouTube: > 1.5 billion in 2013

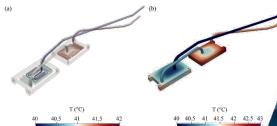
Is energy an issue?

- Why such waste acceptable?
 - Economic gains
- Current AI hype requires attention to the energy efficiency and availability
 - Even for large companies problem with getting profits out of trained models
 - Development and use of AI models by smaller companies and science limited by high costs
 - Next year forecasts: 3.5 millions of NVIDIA H100 GPUs will consume around 13 TWh (yearly consumption of Guatemala or Lithuania)
- Energy costs
 - Sudden rise of energy prices in Europe after start of the war in Ukraine
 - Large energy costs of new HPC systems
- Sustainability goals & EU regulations
 - "European Green Deal"
 - making the EU climate-neutral by 2050
 - "Fit for 55" legislation package
 - reducing EU emissions by at least 55% by 2030 (compared to 1990).

Some trends/predictions from GridLab 2012

Edge

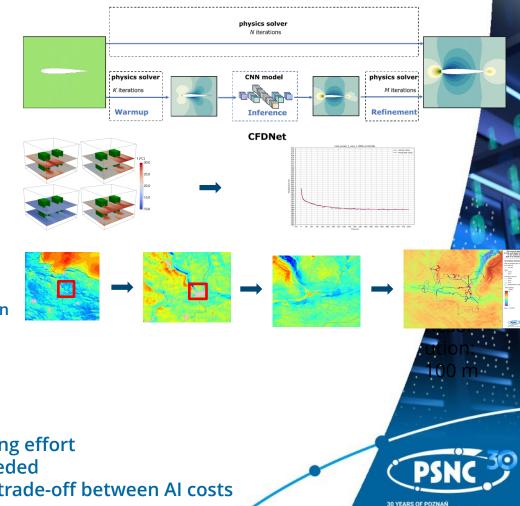
computing?


- Move to massive parallelism using energy-efficient manycore
 architectures
 - From embedded devices market: many simple, low power cores (e.g. ARMs)
 - From highly specialized processors from gaming/graphics market space: GPU/Accelerator (e.g. NVidia Fermi, Tesla)
- Hardware-software co-design, customized hardware
- Huge infrastructures vs micro-datacenters
 - Soon a single rack will deliver 1PFlop!
 - Wide distribution of resources/providers as envisioned in grids?
 - Autonomous data center management
 - Thermal-aware resource management, cooling system, energy supply
- Novel approaches to managing energy supply
 - •Use of renewable energy sources and batteries
 - Automated distribution, reacting to fluctuations
 - •Use of direct current
 - Reducing conversion losses
 - •Heat re-use

Technologies and methods for improving efficiency

- Achievements so far
 - Development of CPU architectures
 - Multicore with specialized units
 - CPU and node level management (e.g. DVFS)
 - Virtualization
 - Even GPUs, e.g. VMware Bitfusion
 - Extensive use of accelerators and specialized hardware
 - Especially visible in cryptocurrency and AI applications
- Thermal management and cooling
 - Direct liquid cooling
 - Immersive cooling
 - 2-phase cooling
- Promising directions
 - Domain specific architectures, hardware-software co-design
 - Mixed precision computing
 - Al-supported simulations

PUTING AND NETWORKING CENTE


AI-supported simulations

Examples

- Speed-up of CFD simulations
 - e.g. heat flow simulations using of OpenFoam
- Replacing heavy computations with surrogate AI model (after training on simulation data)
 - e.g. thermal models of data centers or other spaces
- Predictions based on simulations results
 - e.g. renewable energy production based on weather forecasts
- Many domain specific solutions!

Impact on efficiency

- Not always gains exceed the AI training effort
- Often high replicability of models needed
- Promising direction but need to find trade-off between AI costs and gains

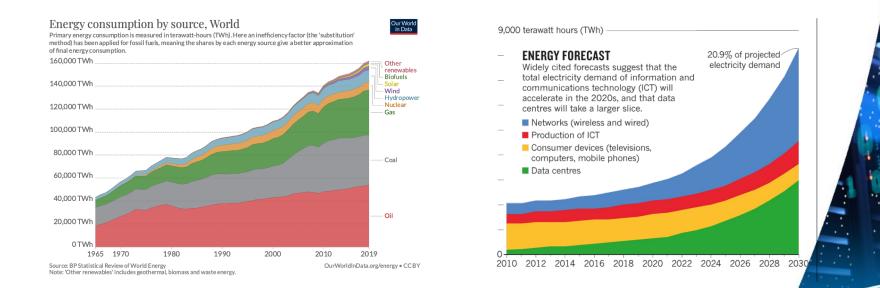
SUPERCOMPUTING AND NETWORKING CENTE

Technologies and methods for improving efficiency

Achievements so far

•	 Developm Multion CPU and r Virtualiza 	Fast progress in energy efficiency – The fastests supercomputer:
•	• Even Extensive hardware	25x more efficient in 2023 than in 2013

- Especially visible in cryptocurrency and AI applications
- Thermal mai
 - **Direct liq** To continue or achieve large gains
 - Immersiv disruptive technologies needed:
 - 2-phase c
- Promising di


- Quantum computing Neuromorphic computing
- Domain s Other?
- software co-design
- Mixed precision computing
- Al-supported simulations

Are advances in energy efficiency enough?

No

The Jevons Paradox: increase in efficiency of resource use = increase in resource consumption

Power usage of the fastest supercomputer:

2023 22,7 MW 2013 17,8 MW

Computing & Energy systems integration

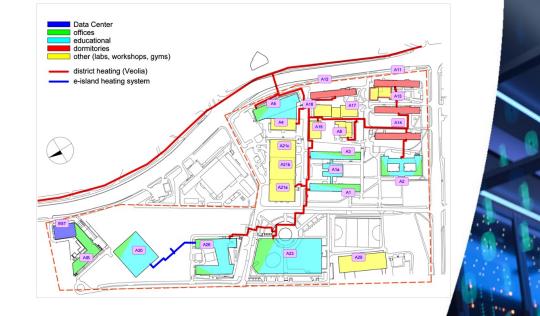
Fact 1: Computing system produce large amounts of heat

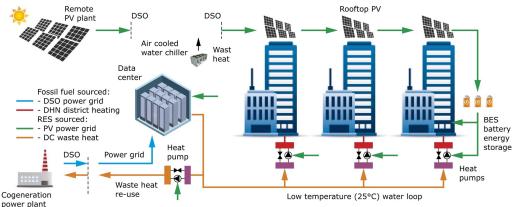
 Energy used to information processing is negligible (Energy is "borrowed")

Let's use this heat And transport it with low overhead

Fact 2: Computing systems consume large amount of Energy
The source of energy and time of use matters



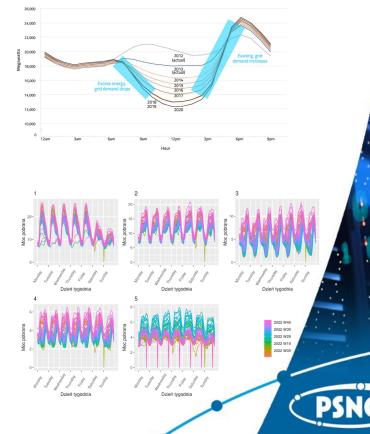

Use the cheap and clean Energy Use it when it is cheap and clean



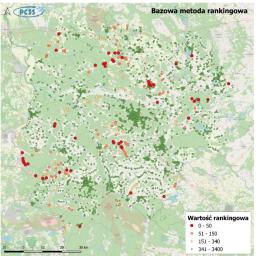
Heat re-use example at campus

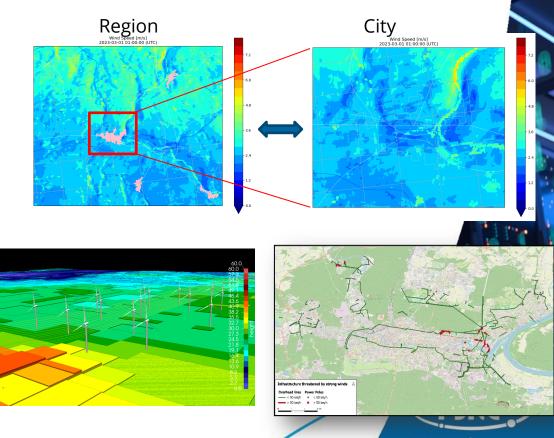
- Current state:
 - Heat from a data center used for PSNC offices heating
 - Existing water loops and District Heating network
- Plans to provide excess heat to nearby campus
 - 30 000 GJ heat per year could be reused
 - Qualitatively, between 25% and 60% of the demand is usually satisfied
 - Individual values can get close to 100% (e.g. during the holidays)
- Simulation models built to optimize the architecture and configuration

Use of renewable energy for computing


- PSNC laboratories at the airfield ~70km from Poznań
- PV installation ~1MWp of power
- Energy storage ~500kWh
- Planned small data center up to 240/480kW power
- The problem:
 - Maximize solar energy use (minimize costs of energy)
 - Based on:
 - Energy production (and its prediction)
 - Battery state
 - Load of computing system
 - Prices of energy (and its prediction)

Computing for Energy


- Power grid can be treated as a big energy storage
 - The same problem as in the small scale
 - And many more to ensure its reliability
- Time aspect The Duck Curve
 - Production from renewable energy sources does not fit the demand
- Energy distribution network
 - A large graph with a large number of nodes
 - ~38 000 power stations in regional distribution network
 - Large time series data
 - 1 billion events monthly
- Distributed energy generation
 - Revising the concept of power grids
 - Towards a digital twin of the network


Computing tools for energy network operators

Optimisation of investments allocation

Predictions based on weather forecasts

Summary & Main messages

- Technologies for energy efficiency
 - Lot's of improvements especially on hardware level
 - Some promising approaches going on
 - But disruptive changes needed
 - e.g. quantum computing
 - Still not enough due to large demand and problem-specific improvements
- Integration of computing and energy systems
 - Heat re-use and efficient heat transfer
 - Maximization of renewable energy consumption
- One of missions of computing for the next decade:
 - Support digitalization and transformation of power grids and energy systems

Thank You!

PS

© Poznan Supercomputing and Networking Center