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HPC Workflows: Motivation

Unsustainable trends for performance & scale

©)

©)

Think beyond single task performance!
“..room at the bottom, even more room sideways!”

Scientific applications are increasingly

©)

Assembled using multiple components (e.g.,
modsim, post-processing), into higher-level
parallel patterns and motifs (e.g., ensembles,
steer)

Consist of multiple stages, leveraging multiple
compute resources and facilities.
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Workflow Motivation: Major Changes at Extreme Scales.

Projected Performance Development

10 EFlop/s

e Rate of computing capability, measured in peak ,,.-::If
FLOPs, will not increase as rapidly as in the past i ,,'f: 4 |
o Scientific advances to be driven by TR
innovative algorithms and software £ Rar
e Supply and demand: Not all ExaFlops are equal! A
o Microsoft #3 on Top 100 A

o EF-days vs EF-hours vs EF-second
e How & when, not if convergence of HPC & Cloud
o Cloudify HPC vs HPCfy Clouds ? IS e r—

» OLCF-6 will push the boundaries on bandwidth throughout the system

o Currently economics on-premises HPC '
deployment; may change? o>
o  Will clouds define new architecture for - o T

Mulfiple, Interconnected
GPUs w/HBM
Jaguar Cray XT4 OLCF-5 Fronfier

. . . Dual 4-Core CPU HPE Cray EX 235a
modeling & simulation as they have for Al?
H Phoenix X1e w Tian Cray XK7 GPUs w/Chiplets
Vegior CPU Hybrid GPU+CPU
OLCF-2 (1) OLCF-2 (3)

Jaguar Cray XT3 Jaguar Cray XT5
Dual 2-Core CPU Dual é-Core CPU



Two illustrative Examples



National Virtual Biotechnology Lab (NVBL)

e National Virtual Biotechnology Lab (NVBL)
o https://science.osti.gov/nvbl

e Aid U.S. policymakers in responding to the
COVID-19 pandemic with epidemiological
information for decision making

e Accelerate production of critical medical
supplies across the nation

e Supercomputing and artificial intelligence
for design of targeted therapeutics

e Leverage chemical testing & analysis to
facilitate new antigen and antibody testing
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https://science.osti.gov/nvbl

National Virtual Biotechnology Lab (NVBL)

January 2022 Volume 62, Issue 1 pubs.acs.org/jcim

After analyzing 100B

‘ INI JOURNAL OF candidates, we
CHEMICAL INFORMATION
AND MODELING proposed:

MCULE-5948770040
interacts with the
SARS-CoV-2 main
protease observed in

the crystal structure
7LTJ.

vACSPuhh( m ons www.acs.0rg
https://doi. org/1O 1021/acs.jcim.1c00851

NVBL given US Secretary of Energy Honour Award (2029)”“""““'0nal Motecules:mas: (ely

cost to be of interest


https://doi.org/10.1021/acs.jcim.1c00851

Impacting SARS-CoV-2 Medical Therapeutics

e Scale of Operation:
« ~10" Docking calculations
« ~10° ML-driven MD calculations
« ~5 x 10* Binding Free Energy Calculations
e« ~2.5x10° node-hours

 Peak Performance

e ~ 8000 nodes on Frontera
e ~ 4000 nodes on Summit

* O(100B) possible due to both methodological
advances (e.g., Al-coupled HPC methods) at
multiple stages and scalable execution
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ExaAM UQ Campaign: Large Ensemble-based Workflow

Uncertain material
absorptivity, surface tension,
heat conduction, etc.

Uncertain nucleation
parameters, initial grain
structure, interfacial
response, etc.

Uncertain sub-grain details

(from Phase Field simulations

or other relationships),
material constants, etc.

OpenFOAM simulation of
heat transport,
computational fluid dynamics

history data

I Time-temperature |

ExaCA simulation of
as-solidified grain

structure

J

| Section of grain I

structure

ExaConstit simulation of
micromechanical response,
properties

Stage Ob-1:
Generate process

Stage Ob-2:
Generate microstructure

Stage Oa:
Select locations in part

g' v

parameter UQ Grid evolution UQ Grid
(Tasmanian/other) (Tasmanian/other)

Stage 1a

———>| pool sims to generate
thermal history
(additiveFOAM)

Perform scan-resolved melt

Stage 4b:
Perform UQ / sensitivity
analysis

e Ability to coordinate a campaign of ensemble of pipelines
o Parallelism at multiple levels; pipelines progress asynchronously

e Each stage of a pipeline is a different workflow, with different workloads
o Each workflow has diverse spatio-temporal properties, resource

management, and scheduling requirements

e Fault-tolerance of the tools and executing processes
o Manage and recover from failures at large-scale

N

———| Stage 1b:

————| Generate many possible

—____,| microstructures
—| (ExaCA)

Stage 3a:

Down select RVEs for
micromechanical property
simulations

(python script)

L]

Stage 4a:
Full part build simulations

“— | (Diablo)

Stage 3b and 3c:

Perform crystal plasticity
simulations and generate
macroscopic material model
properties

(ExaConstit)




Stage 3 (ExaConstit) on Frontier

TR B OpenFOAM simulation of
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7875 concurrent task in scheduling and running states.



2. Al-coupled HPC Workflows



Al-coupled HPC Workflows

e Online concurrent coupling of Al and HPC, not offline training and inference
o Heterogeneous mix of simulations, training, inference, retraining tasks
o Compute time partition: Building and using Al vs generate data and insight

Simulation Aggregation
[ MD 1 ]\ Generate
model

[ MD 2 ] inputs from
. @ trajectory
o Continual L.

| MD N Learning Tra|n|ng

L ) Loop

Model 1 |

Inference Model2 |

|
[
{ Select N ] @ E

simulation
l Model K |

restart points




Al-coupled HPC Workflows: Motivation and Modes

Effective performance measured by “science Ak o ——
for a given amount of computing” A
HPC Model(s) A X ~
Algorithmic Moore’s Law: Learning Simuston | ™A= DAY
: A :
Everywhere "2 Effective performance of 10N : L om0
by coupling AlI/ML with HPC at multiple levels I T vy s R |
e Al-x-HPC modes not mutually exclusive H
y SO S Oy RSSO
o Al-in-HPC is learning and replacing
traditional simulations Beview
o Al-out-HPC is “in charge” of simulation and T . e o
) . . . g (—1 eward (action, measurement, target) Tzzrdaze
optimizing execution a - - @ap OBy
o Al-about-HPC is Al running synergistically =T QT ey T
with simulations bt "

1.2 https://arxiv.org/abs/2208.11745 and https://arxiv.org/abs/1909.13340

https://doi.org/10.1038/s41586-023-06221-2 el



https://arxiv.org/abs/2208.11745
https://arxiv.org/abs/1909.13340

Surrogates for Simulations

GCM (simulation) GCM (emulator) Halo
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https://arxiv.org/abs/2001.08055

Surrogates enhance performance without loss of accuracy

Speedup of tspep relative to tp
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Al-accelerated Protein-Ligand Docking for SARS-CoV-2 is 100-fold

Faster With No Significant Change in Detection (i.e., accuracy)
https://doi.org/10.1038/s41598-023-28785-9



Al-about-HPC: 100x protein folding with the physics

| T — RMET —— MD-BBA-1 —— DeepDriveMD (ML, no RMSD)
_BBA- eepDrive (ML, no ) MD-BBA-2 —— DeepDriveMD (no ML, greedy RMSD)
MBBBa2 = Daapbrivabil (ns ML, grendy 2MED) —— Anton-BBA-1 MD Ensemble (no ML, no RMSD)
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Achieving 100X faster simulations of complex biological phenomena by coupling ML to HPC ensembles. Alexander Brace, Hyungro Lee,
Heng Ma, Anda Trifan, Matteo Turilli, Igor Yakushin, Todd Munson, lan Foster, Shantenu Jha, Arvind Ramanathan:
https://arxiv.org/pdf/2104.04797 .pdf
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Al-coupled HPC Workflows

e HPC Workflows to train and fine-tune Al models
o Few can/will develop LLM/FM from scratch, but
many will fine-tune them locally
o RADICAL Optimal Surrogate Explorer (ROSE)
For UQ-based Optimal model
e HPC Workflows using multiple Al models
o Concurrent and parallel workflows within AL loop 000000200
o Scalable Active-Learning for Material Structure Mo (e (W g
Determination with Neutron Diffraction

Training compute (FLOPs)

SSSSS



https://arxiv.org/abs/2203.15556

Learning Everywhere: #CovidlsAirborne

Classical
molecular
simulations

o)

Quantum
molecular
simulations

ML learn/predict
surrogates

®

PH calculations

—

eE OB

ML learn/predict
surrogates

Computational

/ microscopy of aerosols
&

Delta spike opening
mechanism and rate

Aerosol pH effects on
Delta spike dynamics

Divalent cation effects on
aerosol phase and
molecular dynamics

Collaboration led by Rommie Amaro (UCSD)
https://doi.org/10.1177/10943420221128233


https://doi.org/10.1177/10943420221128233

Improving molecular dynamics accuracy using OrbNet
* Benchmarking OrbNet vs. DFT confirms quantum
accuracy for Ca2+ interactions

* Benchmarking CHARMMS36M vs. OrbNet reveals the
need for electrostatic polarization

e Computational cost reduced from 115M core-hours
for DFT to 100k core-hours for OrbNet

@

Coupled
= Cluster

& (vs wB97xD3)
@ OrbNet -
1 &

DFT

#t

Semiempirical
% | [




Learning Everywhere: IMPECCABLE 2.0

IMPECCABLE 2.0 Workflow - Accelerating COVID-19 drug
discovery

ML components
h O PB method )
« Docking surrogate: faster (O MLmethod High Throughput Coarse-grained

binding affinity-based
filtering

Docking

predictions of docking scores || - = pownstream
for huge chemical libraries. = Upstream

« Pose <'>pt.imizer: a model to ML-based docking ). _ - >
rank binding poses to select surrogate TV, "
the best starting pose for ’
binding affinity calculations.

ML-based binding
pose optimiser

Fine-grained binding'\’
affinity-based
filtering

ML-based y
generative models

o Structure generator: A Chemical Libraries
generative model to create
new “optimized” compounds
with desired properties such PB components

as low binding affinities. * High-throughput docking
* Reproducible and precise binding affinity calculations: ESMACS




3. So What? Systems and Software



Workflows @ Extreme Scale: Why is this challenging?

] 1000x variation in workflow throughput
e Workload comprised of Heterogeneous tasks at 9np

mUItlple levels Table 3: Throughput and performance measured as peak flop
_ per second (mixed precision, measured over short but time in-
© COU pled AI H PC . terval) per Summit node (6 NVIDIA V100 GPU).
o High-throughput function calls Comp 70 Tiogs Trougiod
o EnSmeleS of MPI tgsl_<s o ML1 | 1536 7539 319674 ligands/s
o Spatio-temporal variation within each 5381: y gg% ; gg 14;33 Olilgand;;s
. . - : igand/s
e Collective versus single-task performance S3FG | 6000 7324 200 ligandss
o Campaigns are "integrated” workflows: WF1
and WF4 differ by 10’x in computational cost 107x variation in cost across workflows
©) PrOduce Irs Of data (WF1 ) and consumers Table 2: Normalized computational costs on Summit.
(M L1 ) Method Nodes per Hours per Node-hours
. . . ligand ligand per ligand
e Adaptive Execution at multiple levels (approx)
W kI . T k . . . Docking (S1) 1/6 0.0001 ~0.0001
O orkload: Task mix varies over campaign BFE-CG (S3-CG) 1 0.5 05
. ; ; Ad. Sampling (S2) 2 2 4
o Tasks: Run for varying duration e 7 P :
BFE-TI (not integrated) 64 10 640
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Master Task

One or more Master tasks are
scheduled, placed and launched.




e Master Task Il The Masters each define one or

more Worker tasks which are
e Worker Task - scheduled, placed and launched on

the compute nodes.




Master Task
Worker Task

Once the Master and Worker tasks
are successfully bootstrapped,
each Master directly coordinates
its pool of Workers.




Master Task
Worker Task
MPI Task
Non-MPI Task

LONN

and

can be

scheduled, plaged and launched
alongside Master and Worker tasks.

o




Master Task
Worker Task
MPI Task
Non-MPI Task
Function Calls

OOns

Finally, the Worker tasks begins
to schedule and execute Python




RAPTOR: High-Throughput Function Calls

; Launch/Compute node
%P Agent Bootstrapper I task concurrency
P Scheduler =2 RP Executor executable tasks -
1 ..... > .... 400,000 1 function task;s
=ny -
Clor6 LG 300,000 J
Compute Node 1§ Compute Node n l g “
@)| | CcPus :]3) 200,000
l 5
100,000
O_ T T 1 T T
M Master ETask  [CRP component 0 260 400 600 860 1000 1200
Wl Worker [Function time [sec]
s R . 6
ID Platform Application Nodes Pilots Taslf(is Startup Utilization  Task Time [sec] Rate [x10°/h]
[x10°] [sec] avg/ steady max mean max mean
| Frontera __OpenEye 128 3] 205 129 90%/93% ___3582.6 288  17.4 5.0
2 Frontera OpenEye 7600 1 126 81 90% / 98%  14958.8 10.1 144.0 126.0
3  Frontera OpenEye 8336 1 13 451 63% / 98% 219.0 25.3 91.8 11.0
STt ZatoDock 1666 T 5F 1O7F—95%195% 2639362 3 T




Workflow Performance # Aggregate of Task Performance

—~ 1700

fﬂ ~®- Ran On The Same Node
)

£ 1600-

}_

c

O

S 1500 |

()

%

W 1400 L— —

0 100 200 300 400 500 600 700 800
Task ID, Generated Based on Task Start Time

e Performance portability: a more complex consideration

e Measure & optimize collective performance, not single task performance

e Makespan optimization under performance uncertainty
o More than makespan optimization; non-traditional trade-offs
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Workflows: Software Challenge

¥ &
= . . . Makeﬂol';_lrewo B m:
e Proliferation of workflow solutions: m@cflow . :" : I'F): maestro

o Mostly bespoke, often “local solutions” Keplers: A
pache Tavemacm &md
o Fragile 4P: Performance, Portability, .
Provenance, and Productivity SWI]CB"" %‘2 o= #*parsl

radical

e Need ecosystem to manage proliferation and development models to facilitate
o Building Blocks - Functional components with common interfaces, yet
differentiated assurance, resilience and performance
e Open Building Blocks enable reuse, yet permit specific solutions
o Build upon robust capabilities, while reducing development, testing,
maintenance, etc. costs and enhance portability
o Focus on innovation at higher levels of the workflows stack



ExaWorks (SWAS) Workflows SDK

Providing a production-grade Software Development Kit (SDK)
Implemented via progressively integrated levels
o Level 0: Technologies packaged together

o Level 1: Component interfaces or pairwise integration

o Level 2: Community developed and supported API
SDK democratizes access to hardened, scalable, and
interoperable workflow technologies and components, for both
developers and users
e E4S-based community policies for software quality

Open community-based design and implementation process

o
e Scalability of components on Exascale Systems
e Standard packaging and testing

>
Develop
y g
05 v
g
&
5
< 4fpa
Components

Applications

Exaworks
Scientific
Workflows
SDK

=5

Exascale Systems
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PSl/J: Portable Submission Interface for Jobs

Support for Slurm, LSF, Cobalt, Flux, PBS
Open document to define a Exaworks PSI/J

language-independent specification .
¥ v
Dooocs

o Community specification hitp://exaworks.org/job-api-spec/specification.html
o PSI/J: https://arxiv.org/abs/2307.07895

o ExaWorks: https://arxiv.org/abs/2108.13521
o  https://www.hpcwire.com/off-the-wire/exaworks-provides-access-to-community-sustained-hardened-and-te
sted-components-to-create-award-winning-hpc-workflows/

o https://www.exascaleproject.org/workflow-technologies-impact-sc20-gordon-bell-covid-19-award-winner-an
d-two-of-the-three-finalists

e Aset of interfaces that allow the specification Workflow | Workflow | Workflow
o ” System System System
and management of “jobs
° v
]



http://exaworks.org/job-api-spec/specification.html
https://arxiv.org/abs/2307.07895
https://arxiv.org/abs/2108.13521
https://www.hpcwire.com/off-the-wire/exaworks-provides-access-to-community-sustained-hardened-and-tested-components-to-create-award-winning-hpc-workflows/
https://www.hpcwire.com/off-the-wire/exaworks-provides-access-to-community-sustained-hardened-and-tested-components-to-create-award-winning-hpc-workflows/
https://www.exascaleproject.org/workflow-technologies-impact-sc20-gordon-bell-covid-19-award-winner-and-two-of-the-three-finalists
https://www.exascaleproject.org/workflow-technologies-impact-sc20-gordon-bell-covid-19-award-winner-and-two-of-the-three-finalists

Summary

e \Workflows are increasingly important as the basis of future scientific discovery
o Technology trend and application requirements
o Workflows are the highest-level of execution, parallelism, and programming

e Workflows require a fundamental rethink of performance
o Thinking collectively, beyond single task performance
o Advances in software systems engineering

e Next generation HPC platforms privilege workflows as first class application
o Arguably, the most significant change in supercomputer software ecosystem
o Design and evaluation (e.g., workflow benchmarks)
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Thank youl!
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